Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 153
Filter
1.
Journal of the Asia Pacific Economy ; 28(3):1286-1312, 2023.
Article in English | Academic Search Complete | ID: covidwho-20245319

ABSTRACT

Under the current complex economic situation and the impact of COVID-19, China's capital market reform has entered a critical period, with opportunities and challenges coexisting. One of the important challenges is how to improve the well-being of investors in capital markets. Financial education, which has been offered by financial institutions in many countries in recent years, is likely to become an effective policy instrument to meet this challenge. Using survey data of individual investors from China, this study examines the potential impact of financial education programs offered by financial institutions on individuals' investment diversification. The results show financial education is positively associated with the investment diversification of individual investors. An analysis of the underlying mechanism shows that financial education contributes to the improvement of investment diversification by mitigating limited attention bias, strengthening social trust, and promoting the use of professional investment advisors. These findings suggest that the persistent promotion of financial education programs has a positive effect on optimizing financial asset allocation decisions and improving financial welfare of Chinese households. [ FROM AUTHOR] Copyright of Journal of the Asia Pacific Economy is the property of Routledge and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

2.
Cardiology ; 2023 May 22.
Article in English | MEDLINE | ID: covidwho-20244488

ABSTRACT

INTRODUCTION: The coronavirus disease 2019 (COVID-19) pandemic has led to millions of confirmed cases and deaths worldwide and has no approved therapy. Currently, more than 700 drugs are tested in the COVID-19 clinical trials, and full evaluation of their cardiotoxicity risks is in high demand. METHODS: We mainly focused on hydroxychloroquine (HCQ), one of the most concerned drugs for COVID-19 therapy, and investigated the effects and underlying mechanisms of HCQ on hERG channel via molecular docking simulations. We further applied HEK293 cell line stably expressing hERG-WT channel (hERG-HEK) and HEK293 cells transiently expressing hERG-p.Y652A or hERG-p.F656A mutants to validate our predictions. Western blot analysis was used to determine the hERG channel and the whole-cell patch clamp were utilized to record hERG current (IhERG). RESULTS: HCQ reduced the mature hERG protein in a time and concentration-dependent manner. Correspondingly, chronic and acute treatment of HCQ decreased the hERG current. Treatment of Brefeldin A (BFA) and HCQ combination reduced hERG protein to a greater extent than BFA alone. Moreover, disruption of the typical hERG binding site (hERG-p.Y652A or hERG-p.F656A) rescued HCQ-mediated hERG protein and IhERG reduction. CONCLUSION: HCQ can reduce the mature hERG channel expression and IhERG via enhancing channel degradation. The QT prolongation effect of HCQ is mediated by typical hERG binding sites involving residues Tyr652 and Phe656.

3.
Sci Adv ; 9(22): eadf0211, 2023 06 02.
Article in English | MEDLINE | ID: covidwho-20242861

ABSTRACT

The emergence of a series of SARS-CoV-2 variants has necessitated the search for broad-spectrum antiviral targets. The aryl hydrocarbon receptor (AhR) senses tryptophan metabolites and is an immune regulator. However, the role of AhR in SARS-CoV-2 infection and whether AhR can be used as the target of antiviral therapy against SARS-CoV-2 and its variants are yet unclear. Here, we show that infection with SARS-CoV-2 activates AhR signaling and facilitates viral replication by interfering with IFN-I-driven antiviral immunity and up-regulating ACE2 receptor expression. The pharmacological AhR blockade or AhR knockout reduces SARS-CoV-2 and its variants' replication in vitro. Drug targeting of AhR with AhR antagonists markedly reduced SARS-CoV-2 and its variants' replication in vivo and ameliorated lung inflammation caused by SARS-CoV-2 infection in hamsters. Overall, AhR was a SARS-CoV-2 proviral host factor and a candidate host-directed broad-spectrum target for antiviral therapy against SARS-CoV-2 and its variants, including Delta and Omicron, and potentially other variants in the future.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Proviruses/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , SARS-CoV-2/metabolism
4.
Front Cell Infect Microbiol ; 12: 1040414, 2022.
Article in English | MEDLINE | ID: covidwho-20236364

ABSTRACT

Hand, foot, and mouth disease (HFMD) is a common childhood infectious disease caused by human enteroviruses (EV). This study aimed to describe the epidemiological features of HFMD and the genetic characteristics of Coxsackievirus A16 (CVA16) in Taiyuan, Shanxi, China, from 2010 to 2021. Descriptive epidemiological methods were used to analyze the time and population distribution of HFMD and the genetic characteristics of CVA16. Except being affected by the COVID-19 epidemic in 2020, HFMD epidemics were sporadic from January to March each year, and began to increase in April, with a major epidemic peak from May to August, which declined in September, followed by a secondary peak from October to December. The prevalence of EV infection was the highest in children aged one to five years (84.42%), whereas its incidence was very low in children under one year of age (5.48%). Enterovirus nucleic acid was detected by real-time reverse transcription polymerase chain reaction in 6641 clinical specimens collected from patients with HFMD from 2010 to 2021, and 4236 EV-positive specimens were detected, including 988 enterovirus A71 (EV-A71), 1488 CVA16, and 1760 other enteroviruses. CVA16 remains prevalent and has co-circulated with other EVs in Taiyuan from 2010 to 2021. A phylogenetic tree constructed based on the VP1 region showed that all CVA16 strains belonged to two different clades of the B1 genotype, B1a and B1b. They showed a nucleotide similarity of 86.5-100%, and an amino acid similarity of 96.9-100%. Overall, these findings add to the global genetic resources of CVA16, demonstrate the epidemiological characteristics of HFMD as well as the genetic features of CVA16 in Taiyuan City during 2010-2021, and provide supporting evidence for the prevention and control of HFMD.


Subject(s)
COVID-19 , Enterovirus Infections , Hand, Foot and Mouth Disease , Child , Humans , Hand, Foot and Mouth Disease/epidemiology , Phylogeny , China/epidemiology , Antigens, Viral
5.
Front Genet ; 13: 1034567, 2022.
Article in English | MEDLINE | ID: covidwho-20242831

ABSTRACT

Background: Clear cell renal cell carcinoma (ccRCC) is the main component of renal cell carcinoma (RCC), and advanced ccRCC frequently indicates a poor prognosis. The significance of the CCCH-type zinc finger (CTZF) gene in cancer has been increasingly demonstrated during the past few years. According to studies, targeted radical therapy for cancer treatment may be a revolutionary therapeutic approach. Both lncRNAs and CCCH-type zinc finger genes are essential in ccRCC. However, the predictive role of long non-coding RNA (lncRNA) associated with the CCCH-type zinc finger gene in ccRCC needs further elucidation. This study aims to predict patient prognosis and investigate the immunological profile of ccRCC patients using CCCH-type zinc finger-associated lncRNAs (CTZFLs). Methods: From the Cancer Genome Atlas database, RNA-seq and corresponding clinical and prognostic data of ccRCC patients were downloaded. Univariate and multivariate Cox regression analyses were conducted to acquire CTZFLs for constructing prediction models. The risk model was verified using receiver operating characteristic curve analysis. The Kaplan-Meier method was used to analyze the overall survival (OS) of high-risk and low-risk groups. Multivariate Cox and stratified analyses were used to assess the prognostic value of the predictive feature in the entire cohort and different subgroups. In addition, the relationship between risk scores, immunological status, and treatment response was studied. Results: We constructed a signature consisting of eight CTZFLs (LINC02100, AC002451.1, DBH-AS1, AC105105.3, AL357140.2, LINC00460, DLGAP1-AS2, AL162377.1). The results demonstrated that the prognosis of ccRCC patients was independently predicted by CTZFLs signature and that the prognosis of high-risk groups was poorer than that of the lower group. CTZFLs markers had the highest diagnostic adequacy compared to single clinicopathologic factors, and their AUC (area under the receiver operating characteristic curve) was 0.806. The overall survival of high-risk groups was shorter than that of low-risk groups when patients were divided into groups based on several clinicopathologic factors. There were substantial differences in immunological function, immune cell score, and immune checkpoint expression between high- and low-risk groups. Additionally, Four agents, including ABT737, WIKI4, afuresertib, and GNE 317, were more sensitive in the high-risk group. Conclusion: The Eight-CTZFLs prognostic signature may be a helpful prognostic indicator and may help with medication selection for clear cell renal cell carcinoma.

6.
Front Psychol ; 14: 1152823, 2023.
Article in English | MEDLINE | ID: covidwho-20236542

ABSTRACT

To investigate the relationship among post-traumatic stress disorder (PTSD), posttraumatic growth (PTG), social support, and coping style of university student volunteers in the prevention and control of the coronavirus in 2020, a total of 2,990 university student volunteers (students who are enrolled in a university and involved in volunteer activities) from 20 universities in Sichuan Province participated in the prevention and control of the epidemic were investigated when March 20-31, 2020 when the coronavirus first occurred using the post-traumatic stress disorder questionnaire, posttraumatic growth questionnaire, university student social support questionnaire and coping style questionnaire. The results showed that (1) 7.06% of university student volunteers had some degree of PTSD symptoms (the total PCL-C score was 38-49), and 2.88% had obvious PTSD symptoms, (2) PTSD level of university student volunteers was significantly positively correlated with negative coping style, and significantly negatively correlated with social support and positive coping style; on the contrary, the PTG level is significantly positively correlated with social support and positive coping styles, and (3) Positive coping style plays a partial mediating role in the influence of social support on PTG; in the influence of social support on PTSD, the mediating effect of positive or negative coping style was not significant. These results show that in the prevention and control of the coronavirus, the positive coping style and social support of university student volunteers can positively predict the PTG level of them, while the negative coping style can positively predict the severity of their PTSD symptoms. Among them, a positive coping style plays a partial mediating role in the influence of social support on the PTG level.

7.
Frigid Zone Medicine ; 3(2):105-113, 2023.
Article in English | Academic Search Complete | ID: covidwho-2320890

ABSTRACT

In March 2022, more than 600 million cases of Corona Virus Disease 2019 (COVID-19) and about 6 million deaths have been reported worldwide. Unfortunately, while effective antiviral therapy has not yet been available, chloroquine (CQ)/hydroxychloroquine (HCQ) has been considered an option for the treatment of COVID-19. While many studies have demonstrated the potential of HCQ to decrease viral load and rescue patients' lives, controversial results have also been reported. One concern associated with HCQ in its clinical application to COVID-19 patients is the potential of causing long QT interval (LQT), an electrophysiological substrate for the induction of lethal ventricular tachyarrhythmias. Yet, the mechanisms for this cardiotoxicity of HCQ remained incompletely understood. Adult New Zealand white rabbits were used for investigating the effects of HCQ on cardiac electrophysiology and expression of ion channel genes. HEK-293T cells with sustained overexpression of human-ether-a-go-go-related gene (hERG) K+ channels were used for whole-cell patch-clamp recordings of hERG K+ channel current (IhERG). Quantitative RT-PCR analysis and Western blot analysis were employed to determine the expression of various genes at mRNA and protein levels, respectively. electrocardiogram (ECG) recordings revealed that HCQ prolonged QT and RR intervals and slowed heart rate in rabbits. Whole-cell patch-clamp results showed that HCQ inhibited the tail current of hERG channels and slowed the reactivation process from inactivation state. HCQ suppressed the expression of hERG and hindered the formation of the heat shock protein 90 (Hsp90)/hERG complex. Moreover, the expression levels of connexin 43 (CX43) and Kir2.1, the critical molecular/ionic determinants of cardiac conduction thereby ventricular arrythmias, were decreased by HCQ, while those of Cav1.2, the main Ca2+ handling proteins, remained unchanged and SERCA2a was increased. HCQ could induce LQT but did not induce arrhythmias, and whether it is suitable for the treatment of COVID-19 requires more rigorous investigations and validations in the future. [ FROM AUTHOR] Copyright of Frigid Zone Medicine is the property of Sciendo and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

8.
Transboundary and Emerging Diseases ; 2023, 2023.
Article in German | ProQuest Central | ID: covidwho-2306484

ABSTRACT

The pandemic spread of African swine fever (ASF) has caused serious effects on the global pig industry. Virus genome sequencing and genomic epidemiology analysis play an important role in tracking the outbreaks of the disease and tracing the transmission of the virus. Here we obtained the full-length genome sequence of African swine fever virus (ASFV) in the first outbreak of ASF in China on August 3rd, 2018 and compared it with other published genotype II ASFV genomes including 9 genomes collected in China from September 2018 to October 2020. Phylogenetic analysis on genomic sequences revealed that genotype II ASFV has evolved into different genetic clusters with temporal and spatial correlation since being introduced into Europe and then Asia. There was a strong support for the monophyletic grouping of all the ASFV genome sequences from China and other Asian countries, which shared a common ancestor with those from the Central or Eastern Europe. An evolutionary rate of 1.312 × 10−5 nucleotide substitutions per site per year was estimated for genotype II ASFV genomes. Eight single nucleotide variations which located in MGF110-1L, MGF110-7L, MGF360-10L, MGF505-5R, MGF505-9R, K145R, NP419L, and I267L were identified as anchor mutations that defined genetic clusters of genotype II ASFV in Europe and Asia. This study expanded our knowledge of the molecular epidemiology of ASFV and provided valuable information for effective control of the disease.

9.
Med Gas Res ; 13(4): 212-218, 2023.
Article in English | MEDLINE | ID: covidwho-2298723

ABSTRACT

The medical use of molecular hydrogen, including hydrogen-rich water and hydrogen gas, has been extensively explored since 2007. This article aimed to demonstrate the trend in medical research on molecular hydrogen. A total of 1126 publications on hydrogen therapy were retrieved from the PubMed database until July 30, 2021. From 2007 to 2020, the number of publications in this field had been on an upward trend. Medical Gas Research, Scientific Report and Shock have contributed the largest number of publications on this topic. Researchers by the name of Xue-Jun Sun, Ke-Liang Xie and Yong-Hao Yu published the most studies in the field. Analysis of the co-occurrence of key words indicated that the key words "molecular hydrogen," "hydrogen-rich water," "oxidative stress," "hydrogen gas," and "inflammation" occurred most frequently in these articles. "Gut microbiota," "pyroptosis," and "COVID-19" occurred the most recently among the keywords. In summary, the therapeutic application of molecular hydrogen had attracted much attention in these years. The advance in this field could be caught up by subscribing to relevant journals or following experienced scholars. Oxidative stress and inflammation were the most important research directions currently, and gut microbiota, pyroptosis, and coronavirus disease 2019 might become hotspots in the future.


Subject(s)
COVID-19 , Humans , Bibliometrics , Hydrogen/therapeutic use , Oxidative Stress , Water
10.
Am J Pathol ; 193(6): 680-689, 2023 06.
Article in English | MEDLINE | ID: covidwho-2305845

ABSTRACT

Respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can trigger chronic lung disease that persists and even progresses after expected clearance of infectious virus. To gain an understanding of this process, the current study examined a series of consecutive fatal cases of coronavirus disease 2019 (COVID-19) that came to autopsy at 27 to 51 days after hospital admission. In each patient, a stereotyped bronchiolar-alveolar pattern of lung remodeling was identified with basal epithelial cell hyperplasia, immune activation, and mucinous differentiation. Remodeling regions featured macrophage infiltration and apoptosis and a marked depletion of alveolar type 1 and 2 epithelial cells. This pattern closely resembled findings from an experimental model of post-viral lung disease that requires basal-epithelial stem cell growth, immune activation, and differentiation. Together, these results provide evidence of basal epithelial cell reprogramming in long-term COVID-19 and thereby yield a pathway for explaining and correcting lung dysfunction in this type of disease.


Subject(s)
COVID-19 , Humans , Cellular Reprogramming , SARS-CoV-2 , Lung , Epithelial Cells
11.
Risk Manag Healthc Policy ; 16: 337-346, 2023.
Article in English | MEDLINE | ID: covidwho-2289023

ABSTRACT

Background: The Fangcang shelter hospital has gradually become the primary management mode in China's fight against this Corona Virus Disease 2019 (COVID-19) in 2020. In early 2022, the Fangcang shelter hospital management model was successfully applied to the new outbreak of COVID-19 in Shanghai also. Although Fangcang shelter hospitals are no longer the prevailing mode of prevention of COVID-19, the management experience of Shanghai makeshift hospitals is worthy of reference for public health. Methods: The authors conducted a descriptive statistical analysis of Hall 6-2 of the Shanghai National Convention and Exhibition Center Fangcang shelter hospital. The whole hall of the Fangcang shelter hospital was managed by the one hospital, and the inclusion of third-party management personnel alleviated the shortage of medical personnel human resources. Through practice, a new procedure for treating batch infected people was introduced. Results: By optimizing ward management, 72 on-duty doctors, 360 on-duty nurses, 3 sense-control administrators, and 15 administrators cured 18,574 infected people in 40 days, and created a record of a doctor managing 700 infected people without compromising the quality of treatment. There have been no deaths and no complaints from the infected people located in Hall 6-2 of the Shanghai National Convention and Exhibition Center Fangcang shelter hospital. Conclusion: Compared with previous data, the new management mode of Fangcang shelter hospitals provides a reference for the management of the new infectious diseases for public health.

12.
J Proteome Res ; 22(4): 1009-1023, 2023 04 07.
Article in English | MEDLINE | ID: covidwho-2288822

ABSTRACT

Mass spectrometry (MS)-based blood proteomics is a crucial research focus in identifying disease biomarkers. Blood serum or plasma is the most commonly used sample for such analysis; however, it presents challenges due to the complexity and dynamic range of protein abundance. Despite these difficulties, the development of high-resolution MS instruments has made comprehensive investigation of blood proteomics possible. The evolution of time-of-flight (TOF) or Orbitrap MS instruments has played a significant role in the field of blood proteomics. These instruments are now among the most prominent techniques for blood proteomics due to their sensitivity, selectivity, fast response, and stability. For optimal results, it is necessary to eliminate high-abundance proteins from the blood sample, to maximize the depth coverage of the blood proteomics analysis. This can be achieved through various methods, including commercial kits, chemically synthesized materials, and MS technologies. This paper reviews recent advancements in MS technology and its remarkable applications in biomarker discovery, particularly in the areas of cancer and COVID-19 studies.


Subject(s)
COVID-19 , Proteomics , Humans , Proteomics/methods , Mass Spectrometry/methods , Proteins/chemistry
13.
Microbiol Spectr ; 11(3): e0363222, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2263471

ABSTRACT

Continuous surveillance of enteroviruses (EVs) in urban domestic sewage can timely reflect the circulation of EVs in the environment and crowds, and play a predictive and early warning role in EV-related diseases. To better understand the long-term epidemiological trends of circulating EVs and EV-related diseases, we conducted a 9-year (2013 to 2021) surveillance study of non-polio EVs (NPEVs) in urban sewage in Guangzhou city, China. After concentrating and isolating the viruses from the sewage samples, NPEVs were detected and molecular typing was performed. Twenty-one different NPEV serotypes were identified. The most isolated EVs were echovirus 11 (E11), followed by coxsackievirus (CV) B5, E6, and CVB3. EV species B prevailed in sewage samples, but variations in the annual frequency of different serotypes were also observed in different seasons, due to spatial and temporal factors. E11 and E6 were detected continuously before 2017, and the number of isolates was relatively stable during the surveillance period. However, after their explosive growth in 2018 and 2019, their numbers suddenly decreased significantly. CVB3 and CVB5 had alternating trends; CVB5 was most frequently detected in 2013 to 2014 and 2017 to 2018, while CVB3 was most frequently detected in 2015 to 2016 and 2020 to 2021. Phylogenetic analysis showed that at least two different transmission chains of CVB3 and CVB5 were prevalent in Guangzhou City. Our results show that in the absence of a comprehensive and systematic EV-related disease surveillance system in China, environmental surveillance is a powerful and effective tool to strengthen and further investigate the invisible transmission of EVs in the population. IMPORTANCE This study surveilled urban sewage samples from north China for 9 years to monitor enteroviruses. Samples were collected, processed, and viral identification and molecular typing were performed. We detected 21 different non-polio enteroviruses (NPEVs) with yearly variations in prevalence and peak seasons. In addition, this study is very important for understanding the epidemiology of EVs during the COVID-19 pandemic, as the detection frequency and serotypes of EVs in sewage changed considerably around 2020. We believe that our study makes a significant contribution to the literature because our results strongly suggest that environmental surveillance is an exceptionally important tool, which can be employed to detect and monitor organisms of public health concern, which would otherwise be missed and under-reported by case-based surveillance systems alone.


Subject(s)
COVID-19 , Enterovirus Infections , Enterovirus , Poliomyelitis , Humans , Sewage , Prevalence , Phylogeny , Pandemics , COVID-19/epidemiology , Enterovirus Infections/epidemiology , Antigens, Viral , China/epidemiology
14.
Antiviral Res ; 212: 105579, 2023 04.
Article in English | MEDLINE | ID: covidwho-2268977

ABSTRACT

Porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus in the family Coronaviridae, causes acute diarrhea and/or vomiting, dehydration, and high mortality in neonatal piglets. It has caused huge economic losses to animal husbandry worldwide. Current commercial PEDV vaccines do not provide enough protection against variant and evolved virus strains. No specific drugs are available to treat PEDV infection. The development of more effective therapeutic anti-PEDV agents is urgently needed. Our previous study suggested that porcine milk small extracellular vesicles (sEV) facilitate intestinal tract development and prevent lipopolysaccharide-induced intestinal injury. However, the effects of milk sEV during viral infection remain unclear. Our study found that porcine milk sEV, which was isolated and purified by differential ultracentrifugation, could inhibit PEDV replication in IPEC-J2 and Vero cells. Simultaneously, we constructed a PEDV infection model for piglet intestinal organoids and found that milk sEV also inhibited PEDV infection. Subsequently, in vivo experiments showed that milk sEV pre-feeding exerted robust protection of piglets from PEDV-induced diarrhea and mortality. Strikingly, we found that the miRNAs extracted from milk sEV inhibited PEDV infection. miRNA-seq, bioinformatics analysis, and experimental verification demonstrated that miR-let-7e and miR-27b, which were identified in milk sEV targeted PEDV N and host HMGB1, suppressed viral replication. Taken together, we revealed the biological function of milk sEV in resisting PEDV infection and proved its cargo miRNAs, miR-let-7e and miR-27b, possess antiviral functions. This study is the first description of the novel function of porcine milk sEV in regulating PEDV infection. It provides a better understanding of milk sEV resistance to coronavirus infection, warranting further studies to develop sEV as an attractive antiviral.


Subject(s)
Coronavirus Infections , MicroRNAs , Porcine epidemic diarrhea virus , Swine Diseases , Chlorocebus aethiops , Animals , Swine , Vero Cells , Porcine epidemic diarrhea virus/genetics , Milk , MicroRNAs/genetics , MicroRNAs/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Diarrhea/drug therapy , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Coronavirus Infections/drug therapy , Swine Diseases/prevention & control
15.
Microbiol Spectr ; : e0419422, 2023 Mar 13.
Article in English | MEDLINE | ID: covidwho-2282132

ABSTRACT

Emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developing the capacity for immune evasion and resistance to existing vaccines and drugs. To address this, development of vaccines against coronavirus disease 2019 (COVID-19) has focused on universality, strong T cell immunity, and rapid production. Synthetic peptide vaccines, which are inexpensive and quick to produce, show low toxicity, and can be selected from the conserved SARS-CoV-2 proteome, are promising candidates. In this study, we evaluated the effectiveness of a synthetic peptide cocktail containing three murine CD4+ T-cell epitopes from the SARS-CoV-2 nonspike proteome and one B-cell epitope from the Omicron BA.1 receptor-binding domain (RBD), along with aluminum phosphate (Al) adjuvant and 5' cytosine-phosphate-guanine 3' oligodeoxynucleotide (CpG-ODN) adjuvant in mice. The peptide cocktail induced good Th1-biased T-cell responses and effective neutralizing-antibody titers against the Omicron BA.1 variant. Additionally, H11-K18-hACE2 transgenic mice were fully protected against lethal challenge with the BA.1 strain, with a 100% survival rate and reduced pulmonary viral load and pathological lesions. Subcutaneous administration was found to be the superior route for synthetic peptide vaccine delivery. Our findings demonstrate the effectiveness of the peptide cocktail in mice, suggesting the feasibility of synthetic peptide vaccines for humans. IMPORTANCE Current vaccines based on production of neutralizing antibodies fail to prevent the infection and transmission of SARS-CoV-2 Omicron and its subvariants. Understanding the critical factors and avoiding the disadvantages of vaccine strategies are essential for developing a safe and effective COVID-19 vaccine, which would include a more effective and durable cellular response, minimal effects of viral mutations, rapid production against emerging variants, and good safety. Peptide-based vaccines are an excellent alternative because they are inexpensive, quick to produce, and very safe. In addition, human leukocyte antigen T-cell epitopes could be targeted at robust T-cell immunity and selected in the conserved region of the SARS-CoV-2 variants. Our study showed that a synthetic SARS-CoV-2-derived peptide cocktail induced full protection against lethal infection with Omicron BA.1 in H11-K18-hACE2 mice for the first time. This could have implications for the development of effective COVID-19 peptide vaccines for humans.

16.
Small ; : e2206349, 2022 Dec 05.
Article in English | MEDLINE | ID: covidwho-2253696

ABSTRACT

Infection classification is the key for choosing the proper treatment plans. Early determination of the causative agents is critical for disease control. Host responses analysis can detect variform and sensitive host inflammatory responses to ascertain the presence and type of the infection. However, traditional host-derived inflammatory indicators are insufficient for clinical infection classification. Fingerprints-based omic analysis has attracted increasing attention globally for analyzing the complex host systemic immune response. A single type of fingerprints is not applicable for infection classification (area under curve (AUC) of 0.550-0.617). Herein, an infection classification platform based on deep learning of dual plasma fingerprints (DPFs-DL) is developed. The DPFs with high reproducibility (coefficient of variation <15%) are obtained at low sample consumption (550 nL native plasma) using inorganic nanoparticle and organic matrix assisted laser desorption/ionization mass spectrometry. A classifier (DPFs-DL) for viral versus bacterial infection discrimination (AUC of 0.775) and coronavirus disease 2019 (COVID-2019) diagnosis (AUC of 0.917) is also built. Furthermore, a metabolic biomarker panel of two differentially regulated metabolites, which may serve as potential biomarkers for COVID-19 management (AUC of 0.677-0.883), is constructed. This study will contribute to the development of precision clinical care for infectious diseases.

17.
Lancet Reg Health West Pac ; 27: 100539, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2250906

ABSTRACT

China implemented the first phase of its National Healthy Cities pilot program from 2016-20. Along with related urban health governmental initiatives, the program has helped put health on the agenda of local governments while raising public awareness. Healthy City actions taken at the municipal scale also prepared cities to deal with the COVID-19 pandemic. However, after intermittent trials spanning the past two decades, the Healthy Cities initiative in China has reached a crucial juncture. It risks becoming inconsequential given its overlap with other health promotion efforts, changing public health priorities in response to the pandemic, and the partial adoption of the Healthy Cities approach advanced by the World Health Organization (WHO). We recommend aligning the Healthy Cities initiative in China with strategic national and global level agendas such as Healthy China 2030 and the Sustainable Development Goals (SDGs) by providing an integrative governance framework to facilitate a coherent intersectoral program to systemically improve population health. Achieving this alignment will require leveraging the full spectrum of best practices in Healthy Cities actions and expanding assessment efforts. Funding: Tsinghua-Toyota Joint Research Fund "Healthy city systems for smart cities" program.

18.
Trends in analytical chemistry : TRAC ; 2023.
Article in English | Europe PMC | ID: covidwho-2246525

ABSTRACT

Pathogenic infection remains the primary threat to human health, such as the global COVID-19 pandemic. It is important to develop rapid, sensitive and multiplexed tools for detecting pathogens and their mutated variants, particularly the tailor-made strategies for point-of-care diagnosis allowing for use in resource-constrained settings. The rapidly evolving CRISPR/Cas systems have provided a powerful toolbox for pathogenic diagnostics via nucleic acid tests. In this review, we firstly describe the resultant promising class 2 (single, multidomain effector) and recently explored class 1 (multisubunit effector complexes) CRISPR tools. We present diverse engineering nucleic acid diagnostics based on CRISPR/Cas systems for pathogenic viruses, bacteria and fungi, and highlight the application for detecting viral variants and drug-resistant bacteria enabled by CRISPR-based mutation profiling. Finally, we discuss the challenges involved in on-site diagnostic assays and present emerging CRISPR systems and CRISPR cascade that potentially enable multiplexed and preamplification-free pathogenic diagnostics.

20.
Int J Environ Res Public Health ; 20(1)2022 12 21.
Article in English | MEDLINE | ID: covidwho-2242647

ABSTRACT

Purpose: Since the prolonged sequestration management that was implemented in order to achieve lower infection and mortality rates, there has been a surge in depression worldwide. The correlation between the physical activity level and the detection rate of a depressed mood in college students should be of wide concern. A large number of studies have focused on the association between physical activity levels and a negative mood, but circadian rhythm differences seem to be strongly associated with both physical activity levels and mental illness. Therefore, this paper will examine the correlation between physical activity levels, circadian rhythm differences, and mental health levels in college students. METHODS: Data were collected through a web-based cross-sectional survey. In June and December 2022, questionnaires were administered to college students from three universities in Anhui, China. In addition to socio-demographic information, measures included the International Physical Activity Questionnaire-Short Form (IPAQ-SF), Morning and Evening Questionnaire-5 Items (MEQ-5), and Symptom Check List90 (SCL-90) scales. Correlation analysis was used to understand the relationship between physical activity and circadian rhythm differences in the three aspects of college student's mental health. RESULTS: The analysis of the data led to the conclusion that 28.4% of the 1241 college students in this survey had psychological disorders. The physical activity level of male students was higher than that of female students, but the risk of having depressive tendencies was higher in female students than in male students. There was a significant negative correlation between the physical activity level and scl-90 scores (p < 0.01), which indicates that higher physical activity levels are associated with higher mental health. Circadian rhythm differences and scl-90 scores were significantly positively correlated among college students (p < 0.01), and night-type people had a higher risk of mental illness than intermediate-type and early-morning-type people. CONCLUSIONS: During the period of closed administration due to COVID-19, school college students experienced large and high levels of negative emotional phenomena due to reduced physical activity and public health emergencies. This study showed significant correlations between both physical activity levels and circadian rhythmicity differences and the degree of mental health of college students.


Subject(s)
COVID-19 , Mental Health , Humans , Male , Female , COVID-19/epidemiology , Cross-Sectional Studies , Circadian Rhythm , Surveys and Questionnaires , China/epidemiology , Exercise , Universities , Students/psychology
SELECTION OF CITATIONS
SEARCH DETAIL